On Weight Distributions of Homogeneous Metric Spaces Over GF (p) and MacWilliams Identity

نویسنده

  • Christophe Mouaha
چکیده

We introduce in this paper the notion homogeneous metric space on the Galois field GF (p) , where p is a prime natural number. We show that homogeneous weight enumerators of some linear codes over GF (p) are Hamming weight enumerators of some of their p-ary images. It is also proved that in some cases, the MacWilliams Identity holds for homogeneous metric spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Alternative Proof for the MacWilliams Identity

This paper provides an alternative proof to the MacWilliams identity for linear block codes over GF(q). The intermediate results of our alternative proof offer some insights of the vector-space structure. Our vector-space-based methodology can be used to establish the relation between weight distributions of dual codes for other metrics.

متن کامل

Macwilliams Duality and the Rosenbloom–tsfasman Metric

A new non-Hamming metric on linear spaces over finite fields has recently been introduced by Rosenbloom and Tsfasman [8]. We consider orbits of linear groups preserving the metric and show that weight enumerators suitably associated with such orbits satisfy MacWilliams-type identities for mutually dual codes. Furthermore, we show that the corresponding weight spectra of dual codes are related b...

متن کامل

MacWilliams Identity for Rank Metric Codes

In this paper, we study the rank distributions of linear codes. We give the analogous to the MacWilliams identity for the rank distributions of codes. The considerations of our proof can be adapted to give an alternate derivation of the identity for the Hamming metric. This derivation does not rely on the identity for the complete weight enumerator. Using the result for the rank metric, we dete...

متن کامل

MacWilliams Identity for Codes with the Rank Metric

The MacWilliams identity, which relates the weight distribution of a code to the weight distribution of its dual code, is useful in determining the weight distribution of codes. In this paper, we derive the MacWilliams identity for linear codes with the rank metric, and our identity has a different form than that by Delsarte. Using our MacWilliams identity, we also derive related identities for...

متن کامل

MacWilliams Identity for Codes with the Hamming and Rank Metrics

The MacWilliams identity, which relates the weight distribution of a code to the weight distribution of its dual code, is useful in determining the weight distribution of codes. In this paper, we first provide an alternative proof to the MacWilliams identity for linear codes with the Hamming metric. An intermediate result of our approach is that the Hamming weight enumerator of the dual of any ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012